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A fully developed two-dimensional turbulent wake was deflected by an airfoil-like 
thin plate placed at  small angles in the external flow. The response of the mean-flow 
and turbulence properties of the wake to the ‘ mild ’ pressure gradient and the ‘ mild ’ 
streamline curvature caused by the deflection is studied. Owing to the small defect 
velocity, the extra strain rates are large compared with the main shear strain and 
the Reynolds stresses are strongly influenced by both the pressure gradient and the 
streamline curvature. The defect velocity relative to an appropriately chosen 
‘potential-flow velocity’, and the mean vorticity, however, are not as strongly 
influenced by the curvature. Changes in the magnitudes of the Reynolds-stress 
components are much larger than would be caused by the simple rotation of 
coordinates aligned with the wake path. Most turbulence-model parameters are 
influenced significantly, while some pure turbulence parameters, such as the Taylor 
microscale, are relatively uninfluenced. The rapid and lagged responses are apparent 
and the terms in the transport equation for turbulent kinetic energy indicate that 
the response of the production terms is almost instantaneous, while the diffusion and 
dissipation terms are delayed. 

1. Introduction 
Characteristics of a plane wake with a small velocity deficit, such as the far wake 

of a two-dimensional obstacle, are expected to be sensitive to relatively small 
perturbations in an otherwise uniform external flow since the wake decay is dictated 
by the shear stress, which is proportional to the square of the defect velocity, and can 
be much smaller than the perturbations in pressure or inertia forces, which are 
proportional to the square of the total velocity. Although the overall mean-flow 
quantities may be explained by an inviscid model, as in the case of a strong distortion 
in a moderate-depth wake considered by Hill, Schaub & Senoo (1963), quantities that 
are related to the turbulence, such aa the decay and spread, still need to be explained 
by considering the turbulent stresses. The examination of the response of the 
turbulent stresses to small distortions of the external flow is the main subject of this 
paper. 

In small-defect wakes, where the transverse variation of the velocity is much 
smaller than the absolute value, the ratio of the extra rate of strain due to the 
streamline curvature a V / a x  to the main shear aU/ay can be very large in apparently 
mildly curving wakes (i.e. small SIR where S is a measure of wake width and R is 
the local radius of streamline curvature). This implies that small curvature may 
induce changes in the turbulence quantities, which is in contrast to curved shear 
layers where the minimum velocity is zero or near zero, such as wall-bounded shear 
layers, single-stream mixing layers and jets in still ambient fluid. For the same reason, 
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small streamwise pressure gradients can also influence the evolution of the turbulent 
stresses. The fact that the outer parts of boundary layers have many features in 
common with wakes, and that it is in this part that the curvature effects are felt most 
strongly, suggests a strong sensitivity of wakes to streamline curvatures. 

Understanding of perturbed small-defect wakes is very important in advancing 
methods for analysing and predicting various wake flows of practical importance. 
Experimental data are needed for this purpose, and to verify turbulence models such 
as the transport-equation models of Launder, Reece & Rodi (1975) and Gibson & Rodi 
(1981) and of the rapid-distortion models of Hunt (1978), Savill(l982) and Townsend 
(1980). Despite the importance of the problem and the above-described special 
features, there are not enough detailed data on wakes asymmetrically distorted by 
the external flows. 

Studies of streamline-curvature effects on wakes have recently been reported by 
Koyama (1983) and Savill (1983). Koyama (1983) investigated the mean and 
turbulence properties of the initial developing part of a cylinder wake developing in 
a curved channel in the absence of a streamwise pressure gradient. The flow in this 
region is influenced strongly by the vortex shedding, and the turbulence mechanisms 
are different from those in the developed wake. Savill (1983) investigated a cylinder 
wake that is turned by as much as 90' by means of a back plate so that it is both 
highly curved and influenced by a streamwise pressure gradient. The data indicate 
the strong influence of the streamline curvature on the wake, and that the turbulent- 
stress fields are complex owing to the coexistence of the stabilized and destabilized 
regions across the wake and the interaction between them. 

The present study documents the effects of mild streamline curvature on the mean 
and turbulence quantities of a fully developed plane wake. The wake curvature is 
achieved by means of a thin plate placed near, but outside, the wake at a small angle 
to  the undisturbed free-stream direction, as shown in figure 1. As in the case of Savill 
(1983), there is an effect of streamwise pressure gradient as well as streamline 
curvature and the existence of the former makes it difficult to examine the latter 
because they interact (Smits, Young & Bradshaw 1979; Smits & Joubert 1981 ; Smits 
& Wood 1985). In the present study, qualitative separation of the two effects is 
possible since two wakes were investigated, formed by placing the wake-deflection 
plate a t  positive and negative angles as indicated in figure 1. The two wakes curve 
in opposite directions while in almost opposite streamwise pressure gradients, so that 
pressure-gradient effecta are manifested by opposite trends between the two cases, 
while streamline curvature effects are indicated by antisymmetric flow features. Since 
the wake deflection is introduced after the flow reaches full development, the effects 
of the extra strain rates can easily be distinguished as in the case of more basic 
homogeneous shear flow of Sreenivasan (1983). 

Investigations are centred around the region where the wake curves, and encom- 
pass the initial response and initial recovery back to a straight wake. Among many 
published works on curvature effects, some of those that relate to the present work 
are the measurements of Castro & Bradshaw (1976) made in a curved mixing layer, 
Smits et al. (1979), Smits & Joubert (1981), Gillis & Johnston (1983) and Muck, 
Hoffman & Bradshaw (1985) made on boundary layers with curvature effects. 

2. Small-defect wake with mild pressure gradient and curvature 

with a mild pressure gradient and mild curvature. 
In  this section, equations of motion are derived that describe the small-defect wake 
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In  curvilinear coordinates (s,  n) ,  where s is the distance along a streamline near the 
wake centre (to be defined below) and n is the normal distance from this streamline, 
the continuity and momentum equations, omitting the viscous terms for high- 
Reynolds-number flows, are 

"+"[(1+;)v] as an = 0,  

i lap i a -  =------- u au au uv + v-+ -- 
l + n / R  as an R ( l + n / R )  l + n / R p  as l+n /RasUa  

(2) 
a -  2 z  

an R( 1 +n/R) '  
uv - -- 

where R(s) is the local radius of the curvature of the streamline n = 0, taken to be 
positive if convex in the positive-n direction. We then assume the following 
order-of-magnitude relations for a small-defect wake with mild pressure gradient and 
mild curvature : 

where U, is the velocity outside the wake, Us is the maximum variation of the velocity 
across the wake, L is the streamwise lengthscale, and 8 is half the wake thickness. 
The special feature of the conditions considered here, compared with those of the 
curved shear layers studied, for example, by Margolis & Lumley (1965) and Castro 
& Bradshaw (1976) in the mixing layer, and by Guitton L Newman (1977) in the 
curved wall jet, is derived from the 'small-defect' assumption UJU, 4 1. When 
UJU, 4 1, the basic conditions, 8/L 4 1 and 8/R 4 1 for the boundary-layer 
approximation do not lead to such consequences as aU/an 9 aU/as. In fact, 
aU/an = O( Us/&) and aU/as = O(U, /L)  = O(UJ8)  so that aU/an and aU/as are of 
the same order of magnitude. 

Equations are now simplified under the above-described conditions. The Continuity 
equation (1) reduces to - 

au av o, 
as an -+- = 

which implies that I' is of the order of U, 8/L,  and V 4 U so that the flow may still 
be classified as almost unidirectional like many other thin shear layers. The scale of 
velocity fluctuation, like other turbulent shear flows, is U, and the turbulent 
correlation terms are of the order of e. Then the terms of largest order in the - 
y-component equation (3) are 

ua iap -- - _--- 
R pan' 

which, after integration, gives the pressure 

where p,, is the pressure along n = 0. This expression is accurate to the order of 
8/22. Its s-derivative is accurate to the order of ( q / L )  (8/R),  so it can be used in 

the z-momentum equation to extract an approximation to this order. However, the 
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largest-order terms in the x-component momentum equation are of the order of q / L ,  
and if only these terms are retained, we have 

Equations (5), (6) and (8) represent an inviscid rotational flow. 
In  order to examine the 'wake' characteristics of the flow, such as the momentum- 

and mass-flux deficit, the equations must retain terms of one order smaller. To this 
end, we introduce a hypothetical velocity Up(s ,  n) such that 

This implies that Up(s, n) = U(s ,  n) outside the wake, and inside the wake Up is the 
velocity implied by the Bernoulli equation for irrotational flows. In other words Up 
is an extension of the external potential-flow velocity into the wake. If (9) is used 
with ( 7 )  to eliminate p / p ,  we obtain 

Since the curvature term in this equation is of a smaller order of magnitude than all 
the other terms, u2 in the integral may be approximated by its representative value 
Vp0 = u",(s, 0). Then a first approximation to Up may be given as a linear variation 

where Upo(s) = Up(s,O) = [2(H--p,/p)]: .  This is the potential-flow velocity used by 
So & Mellor (1973) for analysing boundary-layer data on curved surfaces. 

Based on U p ,  as defined by (lo), a defect velocity U, can be dehed  by 

u, = up- u. (12) 

The x-component momentum equation can now be written in a form that is accurate 
to the order of U ,  U,/L.  Noting that U, N Us,  the result becomes 

au, au au u v a -  u -+ v- - - U,$+ v-+-+-,. 
p as an an R an 

This is the transport equation for the defect velocity Up. The equation can be 
linearized in terms of U,, since 

by continuity, and we have assumed that U, 4 Up.  In this case, (13) is a linear 
transport equation for the defect velocity U,. The fist term on the right-hand side 
represents the pressure gradient, while the second and third terms represent the 
curvature effects. If the linear approximation (1 1 ) is applicable, the curvature-related 
terms disappear, reducing the momentum equation to that for straight linear wakes, 
except for Up which varies across the wake. 

An alternative to introducing the defect velocity is to consider the mean vorticity 
52 = a v/as-a/an[( 1 + n/R) v], which, by the present order-of-magnitude assump- 
tions, may be approximated by 

u au 52 = ---_ 
R a n '  
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The transport equation for D reduces to 

asz aa a 2 -  u-+ v- = -uv 
as an an2 

if only terms of highest order are retained. This equation is identical with that for 
thin boundary layers, and indicates that the effects of curvature (and pressure 
gradient) on the .vorticity come through the shear stress only. The transport 
equations for the shear stress and other Reynolds stresses are given below. - - -  - 

The transport equations for u2, v2, w ~ ,  h2 and TE will reduce to 

a -  a -  -au -au u a -  plau u- u2 + v- U2 = - 2uv -- 2u2 -- 2TE --- (u2v) + 2 - -- as ~ u ,  (17) 

u-v2+ v--2 = 2v2-+4Uv--- (18) 

as an an as R an 

a -  a -  -au - u  a 
as an as R an 

a -  a -  a - ptaw 
as an an P u-w2+ V-wa = - - (vw2)+2---  €,, 

- - -  a - a - -au - u  a 
u-uv+ v -uv  = -v2-+u2--- 

as an an R an 

where p’ is the fluctuating pressure, eu, ev, E ,  and e = t(eu + 6, + e,) are the rates of 
dissipation of u2, v2,  w2 and @ E +(u2 + v2 + w2) respectively. These transport 
equations are the same as those for boundary layers on a mildly curved surface 
(S + R). The terms on the right-hand side of these transport equations are arranged 
in order of production (generation), diffusion, pressure redistribution and dissipation 
(destruction). Production terms are arranged in order of shear production, normal- 
stress production, and production due to curvature. 

These equations have been studied by Bradshaw (1973) and others. The influence 
of the extra rate of strain comes through the extra production terms. The importance 
of these terms has been shown by Hunt & Joubert (1979), Gibson & Rodi (1981) and 
Shizawa & Honami (1983). Since the streamwise strain aU/as is very closely related 
to the pressure gradient the generation terms due to normal stresses are related to  
the pressure gradient. They tend to increase 2, decrease 2, and have no direct 
influence on 3 in the region where aU/as > 0. The opposite is true for aU/as < 0. 
The positive curvature R > 0 tends to increase 2, decrease 2 and decrease in the 
region of positive shear stress -ED. The shear stress -E tends to be increased in 
every case. Due to the importance of the relative magnitudes of turbulence 
production caused by pressure gradient and streamline curvature, the following ratios 
of these production terms are often used to quantify their importance : 

- - -  - - -  

and - 

which are the ratios of the production of @ due to the normal stresses and the 
curvatures respectively, to the production due to the shear stress. 

In  the small-defect wake, both of these parameters can become of the order of 
8 F L Y  175 
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FIQURE 1.  Arrangement of wake generator and deflector plate ; dimensions are in mm. 

unity. In  boundary layers, in which these parameters are of the order of unity, the 
structure of the Reynolds stresses is known to be very different from those in plane 
flows at constant pressure. The values of 8 in the present experiments are in the range 
of other 'highly' curved shear flows. It is, therefore, expected that either the pressure 
gradient and curvature effects are very large, or the significance of the values of these 
parameters in small-defect wakes must be different from those in the other shear 
flows. 

3. Experimental arrangements and measurement methods 
The arrangement of the wake generator and the deflector plate is shown in figure 1.  

A wire of diameter 1.6 mm was used to generate a plane wake. The deflector plate 
was placed below the wake at two angles, f7.0", since only a mild deflection was 
needed. The deflector was a 264 mm long, 3.2 mm thick aluminium plate which had 
a 25 mm long leading-edge nose hinged on the main deflector. The purpose of the 
rotatable leading edge was to avoid the separation that can occur on the leeward side 
of the plate. With the leading edge inclined opposite to the direction of inclination of 
the main plate, the boundary layers could be maintained attached up to an angle 
of attack of about 10". The flow when the angle of attack of the deflector is + 7" will 
be referred to as Flow A and that corresponding to -7" will be called Flow B. The 
angle between the chord of the leading-edge device and the free-stream direction was 
set at k2.0" for Flows B and A respectively. The relative positions of the wake 
generator and the deflector plate were selected so that there would be a sufficiently 
large potential-flow region between the wake and the boundary layers on the plate, 
and such that a sufficient local curvature was obtained. The total turning angle of 
the wake is roughly independent of the relative positions, but the magnitude of the 
curvature changes. With the relative positions indicated in figure 1, the streamwise 
distance over which the wake was curved was approximately five wake thicknesses. 

Measurements were made at the six streamwise stations indicated in figure 1. A t  
each streamwise station, a TSI 1243 X-wire probe was traversed vertically (constant 
2) covering the entire wake proper and some external flow. The free-stream velocity 
U ,  was kept constant within 1 yo of 15 m/s, corresponding to a Reynolds number, 
based on wire diameter, of 1550. The hot wires were operated by two TSI 1050 
constant-temperature anemometers. Output signals of the anemometers were filtered 
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between 5 Hz and 10 KHz, and recorded on +in. magnetic tape using the f.m. 
channels of a B&K 7003 tape recorder. These signals were later transferred to another 
tape recorder (HP 3968A) at h th  of the recording speed, and then the signals were 
further reproduced by the HP recorder at one quarter of its recording speed. The 
reproduced signals were sampled and digitized using a 12-bit analog-to-digital 
converter (Cyborg Isaac 91A) controlled by an Apple I1 microcomputer. The large 
speed reduction from the original recording was required to reduce the instantaneous 
velocity components, since the digitizer employed had a slow conversion rate of 
1 KHz and employed non-simultaneous sampling. During the signal handling, the 
gains of the input and output amplifiers were carefully adjusted to minimize the signal 
distortion and the noise. The precise gain and the phase shift between the channels 
were determined by letting sine-wave calibration signals of known amplitude and 
frequency go through the entire system. The overall signal-to-noise ratio is estimated 
to be better than 50. At the reduced speed, the effective sampling rate is 20 kHz (equal 
to the Nyquist frequency corresponding to a low-pass-filter setting of 10 kHz) in real 
time. Only a few data points were sampled at this rate at one time, and they were 
used to correct for the delay between the two channels and to obtain temporal 
derivatives of the instantaneous velocities. This process was repeated 4000 times, 
spread over the time of 30 s, to obtain good convergence of the averages of velocities 
and products of fluctuating velocities and the time derivatives. More details of the 
data processing are given by Akdag et al. (1984). The present digital analysis that 
reduces all the moments and mixed moments of u and v up to fourth-order, and the 
second- and third-order moments of time derivatives, was made at  selected stations 
only. At the rest of the stations (in fact at all measurement positions), real-time 
analog averaging _ _  was done to calculate mean-velocity components and Reynolds 
stresses, u2, v2 and UV. 

The probe was calibrated at a fixed point in the free stream upstream of the 
deflector plate. The probe calibration yielded the constants in the usual Kings-law 
response equation with exponent 0.45 and the angle in the cosine law. The calibrations 
were done immediately before and after each traverse by translating the probe to the 
fixed calibration position. Since the probe was moved to the calibration position by 
keeping the probe angle fixed, there was no probe misalignment. The flow directions 
were determined within the accuracy of the angle calibration, which was about 0.1'. 

The usual problem of reducing statistics of derivatives is the spatial and temporal 
resolution of the probe. From the spectral data of Uberoi & Freymuth (1969), taken 
in a straight-cylinder wake at  constant pressure (and also from the present results), 
the Kolmogoroff length T,I at the centre of the most upstream station, x/d = 300, 
where T,I is smallest, is estimated to be 0.2 mm. The corresponding frequency f in a 
flow of mean velocity U x 15 m/s is f = U/(27tr) FZ 12 KHz. The length of the hot 
wire was 0.7 mm and signals that are low-pass filtered at 10 KHz should represent 
the small-scale fluctuations adequately. 

The two dimensionality of the flow was tested by a few spanwise traverses of the 
probe. The uniformity of the mean flow and the Reynolds stresses was confirmed 
within 0.5 yo and 5 yo respectively, over about 6 wake thicknesses in the centre portion 
of the tunnel. 

4. Experimental results 
In this section, basic results from the measurements are presented. As described 

in $3, the measurements were made in (5, y)-coordinates, but appropriate interpre- 

8-2 
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FIGURE 2. Mean-velocity profiles: (a )  Flow A, (6) Flow B. 0, x/d = 300; 0,  350; 0,  400; 
., 450; A, 500; -, straight-line fit to velocity near and outside wake edges. 

tations should be made in the (s, n)-coordinates used in 52. Since the inclination of 
the coordinate line, n = 0, is at the most f7', use of y, relative to y , (x ) ,  which is 
the vertical position where the defect velocity defined by (12) is maximum, is a 
reasonable approximation to n, and x = const. corresponds to s = const. with a 
similar small discrepancy. The s- and n-direction components of the velocities are 
easily deduced from those in the (x, y)-coordinates. The results presented here are for 
8- and n-direction components at points defined in (2, y)-coordinates. 

It is preferable to present the data in similarity coordinates using s and n in place 
of x and y, so that the results can be directly compared with similar profiles of 
the self-preserving straight wakes. The lengthscale 1, and the velocity scale uo of the 
self-preserving wake are (d(x-x,)): and Um(d/(x-xo))i ,  respectively. Here d is the 
diameter of the wake-generating cylinder and xo is the virtual origin of the wake. 
Therefore, most of the data are normalized by 1, and u, and plotted against (y- y,,)/l,,. 
The value of xo used is -40d. This value was found by Fabris (1979) to allow the 
profiles af mean velocity, Reynolds stresses and triple products in the range of 
x/d = 200 to 400 to be nearly self-similar. However, it must be noted that Townsend 
(1949) used xo = 90d to collapse his data, which were obtained further downstream 
where more rigorous self-preservation was confirmed. 

4.1. Mean-velocity data 

The distributions of the mean velocity in the two wake flows are shown in figure 
2 (a ,  b ) .  The hypothetical potential-flow velocity Up determined by fitting a straight 
line to the mean-velocity distribution near the wake edges is also shown. Determi- 
nation of Up using the definition (9) was not possible since the pressure was not 
directly measured. However, the present linear fit agreed very well with the 
approximation ( l l ) ,  and thus this U p  will be used for further data analysis. 
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FIGURE Trajectory and curvature of the wake centre and velocities at the cen ae and edges of 
the wake: open symbols, Flow A ;  filled symbols, Flow B; -+, mean-velocity vector at y = yc; 0, +, K from double differentiation of yc; D, , K from straight-line fit to mean velocity outside 
wake and (11); A, A, U,,/U,; V, V, Ue,/U,;  0, H, U,lU,. 

A t  the first measurement station, x /d  = 300, the velocity profiles in both flows are 
very close to symmetric so that it may be said that the effects of the curvature have 
not yet set in. Up to x/d = 350 the velocity decreases in both flows. A t  x /d  = 400, 
the strongest asymmetry is seen. Downstream of this position the wakes start to 
recover symmetry. The most asymmetric profile of the present flows still contains 
the minimum-velocity point, and the degree of asymmetry is similar to that a t  the 
initial turning of Savill’s (1983) curved wake. 

The path of the wake, degree of the wake curvature and the pressure gradients are 
shown in figure 3. The trajectory y = yc and the mean velocity vector at this condition 
are shown in figure 3 (a) .  It should be noted that the vertical distances are expanded 
by a factor of 10 relative to the horizontal distances. The mean-velocity vectors at  
y = yc are seen to be nearly tangent to the curve y = yc so that this curve may be 
regarded as a mean streamline as well as the wake centreline (being the position of 
maximum defect velocity). The wake paths in both flows are qualitatively similar 
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X - 
d 

300 
350 
375 
400 
450 
500 

300 
350 
375 
400 
450 
500 

Flow A K 

0.998 1.003 0.939 -1.6 -2.1 0.58 0.17 
0.963 0.975 0.909 -6.3 -3.6 0.09 0.40 
0.933 0.925 0.864 -9.0 -4.1 -0.60 -0.24 
0.891 0.827 0.805 -10.0 -1.2 -1.70 -2.15 
0.928 0.913 0.865 -6.4 4.7 -0.38 -0.46 
0.968 0.977 0.916 1 .o 5.0 0.15 0.28 

Flow B 

1.004 1.002 0.943 1.3 1.6 -0.16 -0.09 
0.991 0.981 0.941 3.2 3.2 -0.46 -0.29 
1.053 1.054 1.004 5.6 3.5 -0.08 0.03 
1.089 1.144 1.063 7.4 1.7 1.84 1.47 
1.089 1.106 1.053 5.5 -3.3 0.42 0.45 
1.059 1.067 1.017 0.6 -4.7 0.14 0.22 

t From double differentiation of ye. 
f .  From straight-line fit to mean velocity outside wake and (1 1). 

TABLE 1. Mean-flow parameters 

to the streamlines of the potential-flow solution near an inclined flat plate in a uniform 
stream. Upstream of the deflector plate they deflect in the opposite direction before 
starting to follow the direction tangent to the deflector plate. In the centre of the 
figure, the curvature of the streamline along the wake centre, calculated by two 
methods, is shown. The first method used is the graphical differentiation of the 
equation for the trajectory of the wake centre. The second method is based on the 
approximation represented by (1 1). According to this approximation, the slope of the 
linear fit to the potential-flow velocity Up is - Upo/R and is related to the curvature 
K = 1/R. These slopes and Up, were obtained from the fitted straight lines shown 
in figure 2(a,  b), and K was calculated. It can be seen that the results of the two 
methods agree very well, indicating that the approximation (1 1) is valid and the linear 
fit to Up, shown in figure 2(a, b), is very good. Note that in both flows, the largest 
curvature is only 2 m-l, or the smallest radius of curvature is about 0.5 m, so that 
SIR is about 0.025. 

In figure 3(c), the minimum velocity U,, and velocities U,, and U,, at the upper 
and lower ‘edges’ of the wake respectively are shown. The edges are taken at 
y = ye _+ 5((x-xo) d); which are the edges of the straight wake where xo is the virtual 
origin of the wake taken to be -40d as described earlier. These edge velocity 
distributions indicate the magnitude of asymmetry relative to the wake depth. Also, 
the difference between U,, and Vet indicate the magnitudes of the net pressure 
variation across the wake. In both cases, in the initial region up to x/d = 350, the 
wake is subjected to a small adverse pressure gradient as it shifts slightly in the 
direction opposite to the main deflection direction. In  the region between xld = 350 
and 400, Flow A undergoes an adverse pressure gradient while Flow B is accelerated. 
At xld = 400, the two wakes are deflected most strongly, and in the region 
downstream, both presaure gradient and curvature relax. The deceleration of Flow A 
prior to turning a t  xld B 400 is milder than the acceleration of Flow B in the same 
region. The acceleration of Flow A after turning is stronger than the deceleration of 
Flow B in the corresponding region. 
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FIGURE 4. Mean defect-velocity profiles in similarity coordinates: (a) Flow A, ( b )  Flow B. 
0, x/d = 300; 0, 350; 0 , 4 0 0 ;  ., 450; A, 500; -, straight-wake data of Fabris (1979). 

Although there are differences in the details of the pressure gradients and the 
curvature, Flows A and B are seen to be subjected to nearly opposite pressure 
gradients, and deflected in almost opposite directions. Some mean-flow parameters 
are listed in table 1. 

Figure 4 (a ,  b) displays the defect velocity U,( = U p -  U )  profiles) in similarity 
coordinates, i.e. the velocity is normalized by u, = Um(d / (x - zo ) ) i  and the transverse 
distance is normalized by I, = (d(x-x, ,))k For comparison, Fabris’ (1979) data, taken 
at x/d = 400 in straight wake, are shown as solid lines. The general growth in width 
and depth of the wake in Flow A and the shrinking and shallowing in Flow B are 
in agreement with the effects of pressure gradient seen by Hill et al. (1963). It appears 
that the wakes are slightly wider on the ‘outer’ side as they turn; otherwise there 
is no apparent asymmetric feature. Hence it may be said that the curvature effects 
on these defect-velocity profiles are small. 

Figure 5(a, b) illustrates the profiles of the mean-velocity component V in the n 
direction. V in the present flows is very large, and is of the same order of magnitude 



226 A. Nakayamu 

rn 
I V 

A UO 

0.4 
A 

0 .  

0.6 0.8 

-0.4 \ - = m  
A 

x / d = 4 5 0  ' 

400 

-0.6 L 

-0.6 -0-4 t 
FIGURE 5. Mean normal velocity profiles in similarity coordinates: (a) Flow A, ( b )  Flow B. 

Symbols are as in figure 4;  -, V = -(dU,,/ds)(y-y,). 

as the defect velocity U,. The V-profiles of Flow A are nearly linear in n. The slope 
is related to aU/as by the continuity equation. The straight lines shown in figure 5 
are 

dU 
ds 

v = -A (y- y,) 

at x/d = 400 and 450. These straight lines approximate the actual V-distributions 
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I, estimated magnitude of measurement and differentiation errors. 

fairly well, although there is some discrepancy at x/d = 400 on the lower side of 
Flow B. 

Mean-vorticity profiles are presented in figure 6 ( a , b ) ,  again in terms of the 
similarity coordinates. The reduction of i2 from the mean-velocity profiles involves 
graphical differentiation and is not very accurate. However, the results indicate, 
within the degree of uncertainty indicated by the estimated error bar, that the mean 
vorticity is not greatly influenced by the wake deflection. This indicates that the 
distortions in the mean-velocity profiles are mostly irrotational. 
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4.2. Reynolds stresses 

Results of the Reynolds-stress components u2, v2 and UV are shown in figures 7-9. 
Again, they are presented in the similarity coordinates so that they may be compared 
with those obtained from an unperturbed straight wake. The data of Fabris (1979) 
are shown as solid lines for comparison purposes. Fabris' data were chosen for this 
comparison since his data were obtained at x / d  = 400, which is in the middle of the 
present measurement region. Agreement between the present data at the most 
upstream station, x/d = 300, and the Fabris straight-wake data are good considering 
that the facilities and methods of measurement are quite different. The present 3 
and the absolute values of UV, however, are seen to be smaller. The shear correlation 
coefficient -Zii/u'v', where u' = 2; and v' = @, is also slightly smaller. In the 
present measurements, the wake-generating wire was only about 50 mm downstream 

_ _  
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of the wind-tunnel contraction, and the cylinder Reynolds number is about one half 
of Febris’, so that xo may have been slightly different from -40d. Also, the plot 
of U,, and U,, shown in figure 3 indicates that there is a small adverse pressure 
gradient upstream of x/d = 300. This could be another reason for the lower 3 and 
lower ITiDl. Such trends in adverse pressure gradients were observed by Gartshore 
(1967). For the purpose of the present study, where the relative trends are most 
important, these small discrepancies are not serious if the present data at  x/d = 300 
are taken as the baseline straight-wake data. 

A t  stations downstream of x/d = 350, a considerable amount of asymmetry, as well 
as across-the-wake trends, can be observed in all stress components. The strongest 
asymmetry is seen in the shear-stress profile at x/d = 450 of Flow A, and the 
streamwise intensity 2 of Flow B shows the least asymmetry. 

The changes in the Reynolds-stress components uz, v* and TiD are much larger than 
would be expected to result from simple coordinate rotation. The change in UV, caused 
by rotating the axes by an angle 8, for example, is - (u2-vz) sin8 cos8 (Castro & 
Bradshaw 1976) when 8 is small, and is, a t  the most, about 0.005~:  in the present 
flows. The magnitudes and the sense of changes are largely as expected from the initial 
part of Savill’s (1983) curved wake. 

It is seen that the across-the-wake trends of Flow A and Flow B are actually 
- opposite, which may be attributed to the opposite pressure gradients. The levels of 
u* are generally higher in Flow A, and lower in Flow B, than the baseline levels at 
x/d = 300. The width of the wake, as implied by the region of non-negligible 
turbulence intensity, is wider in Flow A and narrower in Flow B. These trends are 
in agreement with the data of Gartshore (1967) and Narasimha & Prabhu (1972) that 
were obtained in wakes with pressure gradients. It is also seen that, although there 
is a considerable difference in the degree of asymmetry, the asymmetric features are 

- -  

_ _  
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opposite for Flow A and Flow B, which are turning in opposite directions. Except 
for 2 in Flow A, the strongest asymmetric features are seen at station xld = 450. 
It should be noted that the strongest asymmetry in the mean-velocity profiles was 
observed a t  the more upstream station, x/d = 400. 

The value of u" is larger on the lower half in Flow A, and on the upper half in 
Flow B and vice versa with 3. It is noted that the stability conditions imply increased 
- turbulence on the upper side of Flow A and vice versa in Flow B. The increase of 
u2 on the stable side of the wake does not agree with the trend observed by Koyama 
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(1983) in the near wake ( x / d  < 100) nor with the results of Savill(1983), which show 
that 2 stays symmetric even after the wake has turned as much as 26". However, 
the present trends do agree with the implications of the changes in the generation 
terms in the transport equations. 

The Reynolds shear stresses shown in figure 9 (a,  b) present the largest asymmetric 
features, indicating the strongest sensitivity to curvature. The large reduction in UV 
on the stable side of Flow A is in agreement with the results at the early stages of 
Savill's (1983) wake. It reduces to less than half at x / d  = 450, compared with the 
initial station x / d  = 300. It should be remembered that the ordinates are in similarity 
coordinates, so that the normal reduction in self-preserving situations does not show 
up in these plots. A decrease on the stable side of Flow B, and an increase on the 
unstable sides of both flows, are also seen a t  the same streamwise station, x / d  = 450. 

The development of the Reynolds-stress profiles also shows the dependence of 
curvature effects on the history of pressure gradients, or the interdependence between 
two effects. In Flow A, which is initially decelerated, asymmetry is obtained quickly 
and symmetry is recovered quickly as well. In Flow B, which is initially accelerated, 
the degree of asymmetry is smaller; it appears slowly and persists longer in the 
downstream adverse-pressure-gradient region ( x / d  > 400). At the most downstream 
station, x/d = 500, it still shows definite asymmetry. It appears that the curvature 
effects on 2 show up more easily and are maintained longer in an adverse- 
pressure-gradient environment. 

4.3. Averages of triple products 
For Reynolds-stress transport-equation modelling, the turbulent transport terms 
must be modelled, and experimental da$a are needed to guide - -  this. Three such 
quantities, u%, ws and s, that ere respectively the transports of u2, v2 and TiE, are 
shown in figure 10 (a-c) for Flow A. Reference is also made to the straight-wake data 
of Fabris (1983). The present data for & and 3 at x / d  = 350 agree reasonably well 
with Fabris' data, while 3 is considerably smaller, probably for the same reason that 
the low 3 was seen earlier. 

A significant feature of dl these transport quantities is that they show more 
pronounced asymmetric features than changes in overall level, and the appearance 
of asymmetry is much more delayed than in the case of the Reynolds stresses. The 
Reynolds stresses all showed recovery, though not complete, a t  x / d  = 500, but the 
triple products show strongest aaymmetry at this most downstream Iocation. They 
all show considerable increases on the unstable side and reductions on the stable side. 
This implies that Considerable transport of Reynolds stress from the unstable side 
to the stable side continues after the turning is completed. 

_ _  

4.4. Some detailed statistics of streamwise Jluctuations 
Some results from further statistical analysis of the fluctuations of the streamwise 
velocity component are considered next. First, the skewness and the flatness factors 
of the fluctuating velocity component u as defined by 

are shown in figure 11 (a, b) for Flow A. The straight-wake data of Fabris (1983) are 
represented by a solid line. These quantities provide information on the shape of the 
probability-density function of u, and certain aspects of the turbulence structure. 
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These results illustrate that the skewness and flatness factors in the present wake are 
not very much influenced by either the pressure gradient or the curvature. The 
distributions of the flatness factor, in particular, at all stations studied are very 
similar and agree well with the straight-wake data. If there is a close relationship 
between the flatness factor and the intermittency factor, as suggested by Townsend 
(1976), the present results indicate that the intermittency, which was not measured 
directly, is not influenced by the wake deflection. A close examination of figure 11 (a) 
reveals that the skewness factor is increased at z/d = 400, and appears to remain high 
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FIGURE 10. Averages of triple products in Flow A:  (a) &, ( b )  z, (c) 2. Symbols are aa in 
figure 7. 

in the central region of the wake. More positive skewness implies the existence of 
sharper positive spikes in the u-signal. 

Figure 12 presents the Taylor microscale h defined by 

where (au/as)2 is computed from (au/i3t)z/ u2, based on Taylor’s frozen-turbulence 
assumption. It is seen that ;\-distributions at all stations between x/d = 350 and 500 
are quite symmetrical and stay fairly constant across the wake, showing the 
insensitivity of this quantity to the wake turning. The independence of the microscale 
from streamline curvature was also noted by Ramaprian & Shivaprasad (1978) in the 
case of mildly curving boundary layers. It is unfortunate that this lengthscale is not 
very useful for modelling the Reynolds stresses. 

5. Discussion 
5.1. Effects of pressure gradient and streamline curvature 

The main purpose of the present investigation of two wakes is to study the effects 
of short regions of ‘ mild ’ pressure gradient and ‘ mild ’ curvature. The term ‘ mild ’ 
has been used since the lengthscale associated with the pressure gradient 
Upo/(dUpo/dz) is much larger than the wake width 6, and the radius of the streamline 
curvature is also much larger than S. The minimum values of the ratios of these 
quantities are Upo/(dUpo/dx)/6 = 25 and R/S = 25. Indeed, the mean-velocity 
characteristics represented by the defect velocity relative to an appropriately 
determined potential-flow velocity in appropriately chosen curvilinear coordinates, 
were seen to be influenced very little by these effects and support the use of the term 
‘mild’. 
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Bradshaw (1973,1975) classified shear layers according to the relative magnitudes 
of extra strain rate and simple shear strain aU/ay. A shear layer with an extra strain 
rate e,  which may not satisfy e(aU/ay)-l -4 1 (the requirement for the thin-shear-layer 
or the boundary-layer approximations), but satisfies a more relaxed requirement, 
e(aU/ay)-l  < 0.1, is classified as a fairly thin shear layer. Bradshaw pointed out that, 
for fairly thin shear layers, the equations can be implemented by approximating some 
of the terms ignored in thin-shear-layer approximations, but the changes in 
turbulence structure may be significantly large. The analysis presented in $2 shows 
that the present wake flows do not satisfy the thin-shear-layer requirements. The 
measured data indicate that I(aU/ax) (aU/ay)-lI along the line of maximum laU/ayl 
is as large as 0.2 at x / d  x 350 and 450, just before and after the turn. Also 
( (aV/ax)  (aU/ay)-'l along the maximum laU/ayl exceeds 0.1 at  stations between 
x / d  = 350 and 450. The maximum value is reached at z / d  = 400 on the stable side 
where (aV/ax)  (aU/ay)-l x -0.5 so that in terms of the ratio of the extra strain rate 
to the shear strain, the present wake flow violates even the requirements for the fairly 
thin shear layer. It is remarkable that this is the case even for a small turning of It 7" 
over a few wake thicknesses. This may be compared with the strongly curved mixing 
layer of Castro & Bradshaw (1976), which turns as much as 90" over approximately 
15 mixing-layer thicknesses and still satisfies the thin-shear-layer requirements for 
most of the regions. 

Appropriate parameters of pressure gradients and curvature effects are F and S, 
as defined in (22) and (23). An indicatian of the magnitude of these parameters can 
be obtained from the plots of P and S at representative positions (maximum and 
minimum UV locations) in the upper and lower halves of the wake as shown in 
figure 13. The magnitudes of F and S are seen to be locally large, exceeding 0.4 
at their peaks, but S at all other stations is smaller than 0.4. 

It also can be seen in figure 13 that the curvature effects in Flow A and Flow B 
may not appear quite as opposite as indicated by the mean-flow parameters 
illustrated in figure 3. They are much larger in Flow A, which is subjected to an 
adverse pressure gradient first, than they are in Flow B. Also, they do not appear 
symmetrically. The absolute value of F in the lower half, for example, is much larger 
than that in the upper half. This makes the separation of the pressure-gradient effects 
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and streamline-curvature effects a little more difficult than originally desired. The 
distribution of S in Flow B, however, is very close to the mirror image of that in 
Flow A, and it can be expected that curvature effects will appear in Flow A and 
Flow B in opposite manners. 

The overall effects on turbulence may be demonstrated by the changes in kinetic 
energy and shear stress. I n  figure 14 the maximum values of G+G, which are 
considered to represent the characteristics of the turbulent kinetic energy, and the 
maximum values of IEij, are plotted against streamwise distance. Since they are 
normalized by appropriate velocity scales of self-preserving straight wake, changes 
with respect to x may be regarded as the influence of the pressure gradient or the 
streamline curvature. It is seen that 2+? correlates better with the way F changes. 
In  Flow B, in particular, the levels on the two sides are very close, and do not reflect 
the asymmetric feature implied by S. In  fact, i t  will be seen that u2 + v2 is very closely 
related to the total production. On the other hand UV is seen to be a very strong 
function of the curvature parameter S, although there is an apparent phase lag of 
approximately 50d, which is approximately three wake widths. It is also noted that 
the fractional changes of UV are much larger than those of G+3,  so that their ratio, 

_ _  
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- 

- 

which resembles very closely the ratio of the shear stress to the turbulent kinetic 
energy, is a strong (but lagging) function of S.  The lagged response in other curved 
flows has been previously demonstrated by Castro & Bradshaw (1970) and Smits 
et al. (1979). 

5.2. Turbulent-energy balance 
In  this section, the terms in the transport equation (21) for the turbulent kinetic 
energy are examined. Calculated values for Flow A are shown in figure 15 (ad). Some 
assumptions have been made regarding averages involving the spanwise - -  component 
of fluctuating _ -  velocity w, which was not measured. They are 2 = $(ue+w2), and 
w2w = f(uew + ws). The first of these was found to be satisfied approximately for much 
of the stable side of Savill’s (1983) wake. The local-isotropy and frozen-turbulence 
assumptions are made to calculate the rate of dissipation of the turbulent kinetic 
energy e = 15v(au/at)*/UZ. The diffusion due to the pressure fluctuations could not 
be obtained. If all the other terms were determined accurately, the pressure-diffusion 
terms could be obtained from difference, but the present data are not accurate enough 
to allow this. Hence, what is referred to as diffusion here is the diffusion or transport 
by fluctuating velocity. 

The energy balance at z/d = 350 (figure 15a) is seen to be reasonably close to the 
straight-wake data of Townsend (1976), except that the production may be slightly 
smaller owing to the adverse pressure gradient in this region. A t  z/d = 400, the 
production increases drastically on the unstable side (upper half) and decreases on 
the stable side (lower half). It is observed to be negative near the lower edge. An 

- 
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examination of the production terms indicates that  this negative production is caused 
by the extra (negative) production due to  the curvature, and the production due to 
the shear stress stays positive throughout. This positive shear production was noted 
by Savill (1983) throughout his strongly curved wake. The diffusion appears to remain 
unchanged. The dissipation increases slightly throughout the wake, but does not show 
any decrease on the unstable side. Changes in the production are mostly balanced 
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by the changes in the advection. This implies that the level of the turbulent energy 
change is directly due to the increased or reduced production. 

At the next station, x/d = 450, the production terms continue to show a strong 
asymmetry. On the lower half it is almost zero, and even negative near the centre 
and the lower edge, which implies that the stabilizing effects come from the collapse 
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of the energy production. Unlike at x / d  = 400, the main cause of the negative and 
low production is the (negative) normal-stress production. The extra production due 
to the curvature has dropped to an insignificant level. Production due to shear stress 
still remains positive throughout, and the large production on the other side is mostly 
due to this shear production. A t  this station the diffusion terms start to counter- 
balance part of the asymmetry in production terms, while the dissipation still appears 
to be uninfluenced. Here, the turbulent energy does not change as much as the 
production terms indicate. Some of the energy converted from the mean flow is also 
transported by diffusion. At stations further downstream, x / d  = 500, the production 
and advection terms are returning to the self-preservation values, while diffusion still 
shows asymmetry. The dissipation at this last station finally shows recognizable 
asymmetry, being smaller on the unstable side. 

The implication of the above observation is important. When the wake undergoes 
a deflection, the extra or reduced turbulent energy converted from the mean flow 
takes some time to be transported and dissipated. The present data indicate that the 
timescales for the responses of the production, diffusion and dissipation are all 
different. Townsend (1949) estimated that the timescale of mixing in a straight wake 
is 0.19 (x--x,)/U,,  which corresponds to a streamwise mixing distance of about 0.2 
(x-x,). Where x is about 450d, it  is loo&. In  the present Flow A, the streamwise 
distance between the position where the changes in production are seen ( x / d  = 400), 
and the position where the dissipation starts showing the effects (z/d = 500), is about 
1OOd. This distance appears to correspond to the mixing scale. It should be noted 
that the relaxation length discussed by Narasimha & Prabhu (1972) is the distance 
necessary to return to equilibrium, and is much longer (about 1OOOd). It should also 
be noted that the transverse mixing scale, which represents lengthscales such as the 
Prandtl mixing length and dissipation length L, = lUVl-i/c is much smaller and is 
about 0.051,. In  flows where the changes occur over distances shorter than, or 
comparable with, this mixing distance the response of 6 is delayed, afd the time- or 
lengthscale obtained by combining c and velocity scales such as lUVl* or (@) show 
both immediate and time-delayed responses. The behaviour of the mixing length and 
L, = (?)!/c is discussed in the next section. 

5.3. On turbulence modelling 
At any level of turbulence modelling, one of the important steps is to express 
higher-order correlation in terms of lower-order ones. One-point correlations up to 
fourth order have been measured in the present experiment, and the indications of 
the data are of interest. In  figure 16, the streamwise variations of correlations of 
different orders are shown. The mean shear strain aU/an- KU is also shown, as this 
is the quantity that is correlated with the second-order correlation -iii7 in an 
eddy-viscosity-type modelling. The highest-order correlation is the transport of 
3, which is the transport of UV. The maximum absolute values of these quantities 
are clearly defined in both upper and lower halves of the wake and only these values 
are plotted. The transverse positions where these values are maximized are different, 
as can be seen from figures 9 (a) and 10 (b) ,  but they are all in the neighbourhood of 
maximum-shear locations. Incidentally, the position where aU/an- KU = 0 does not 
coincide with the position where u2( = 0, and the position where a(UV)/an = 0 does 
not coincide with the positions where 

It can be seen clearly from figure 16 that the response of UV is very strongly related 
to the changes in the shear strain aU/an-KU, but with a definite lag. If one takes 
the ratio of TiW and aU/ay- KU (i.e. the eddy viscosity), it  is immediately seen that 

= 0. 
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at an early station like xld = 400, where aU/ay - KU on the lower side has dropped 
to about one-third of the self-preserving value but UV has started to drop only about 
20 % , the eddy viscosity is more than double the self-preserving value. At station 
xld = 450, where UV has decreased to about one-half and W/ay- KU has recovered 
back close to the self-preserving values, the eddy viscosity is now very small. This 
initial downstream increase and reduction in the eddy viscosity is very large and 
goes out of phase with the dissipation rate e such that the ratio of eddy viscosity to 
(@)2/e, often assumed constant in k-etype computational methods (e.g. Rodi & 
Scheuerer 1983), varies widely. The way they change is too complex to be correlated 
with such parameters as F and S. Simple correction factors applied to mixing length 
or eddy viscosity based on For S for slowly changing flows will not work, and methods 
that reflect both rapid changes and lagged responses will be required. At least 
simplified transport equations (e.g. Johnson & King 1984) or rate equations are 
needed. 

To demonstrate this, the mixing lengths 1, for Flow A and Flow B are plotted in 
figure 17 (a, b), and the distribution of the dissipation length L, is shown in figure 18. 
The complex behaviour of the mixing-length distributions is seen in figure 17 (a, b). 
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To aid in the interpretation of the data, the distribution before the wake deflection 
is indicated by the broken line and the data points at the strongest-curvature station, 
x/d = 400, are connected by the solid line. In both Flow A and Flow B the mixing 
length suddenly drops on the unstable side, i.e. the upper half of Flow A and lower 
half of Flow B, and increases on the stable side. In the outer part of the stable side 
at x/d = 400, the mixing length could not be calculated owing to the negative shear 
stress in the region of positive shear strain or vice versa. In Flow A, right after the 
bend, 1, springs back to nearly the original level on the unstable side, while on the 
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RGURE 18. Distribution of dissipation lengthscale L, in Flow A ;  symbols are as in figure 7 .  

stable side it jumps down below the initial level and stays there. Similar behaviour 
is seen in Flow B except 1, goes below the original level on the unstable side. The 
initial response of 1, at x/d = 400 is due mostly to the sudden increase in the shear 
strain aulan, while the initial recovery at xld = 450 is due to the lagged response of 
uv to the change in aU/an. The initial response of 1, to the application of curvature 
seen here is an entirely new feature that has not been considered in previous attempts 
at such boundary-layer modelling (Adams & Johnston 1984; Shizawa & Honami 
1983). 

The transport equation of the shear stress UV contains the transport a that needs 
to be modelled. The response of 3 is seen to be more delayed than 2. However, 
the transport 3 of shows a quicker response than a. Hence, the extrapolation 
that higher-order correlations inevitably have longer response time does not hold 
here. It appears that 3 and UV have similar timescales. 

Figures 19 and 20 illustrate two quantities related to the modelling of the 
triple product fi. The first quantity is the eddy-diffusivity coefficient C,, for 2, 
defined by 

- 

- 
u2v C r -  _ -  

tu ( @ / E )  v2(au2/an) 

and the second is the turbulent transport velocity V,, defined by 

It can be seen that C,, behaves in a complicated way and curves are drawn through 
points to aid visual interpretation. In  the central region it was not possible to draw 
the curves owing to the scatter in the data points. The scatter is due to various errors 
in the determination of various quantities in the definition of C,,, but the erratic 
behaviour is also due to the non-coincidence of positions where = 0 and 
&$/an = 0. In terms of modelling, the region where u22) x 0 and @/an x 0 is not 
critically important, so that attention may be concentrated on the values of C,, in 
the regions where takes more than, say, half of the peak values. These regions 
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FIQLJRE 20. The turbulent transport velocity V ,  for 2; symbols are the same as figure 19. 

are indicated by the arrows. It is seen that C,, is reduced on both sides of the wake, 
but by a larger amount in the lower half. It should be noted that the value of C,, 
used in the computational method of Launder et al. (1975) is 0.21. 

The behaviour of the transport velocity V, is similar to &, except that it is now 
'scaled ' by the local value of 2. V ,  is seen to increase slightly in the (unstable) upper 
side and decrease in the lower half. The initial drop at xld = 400 is due to the reduced 
u2 there and the low level at x/d = 450 and 500 is due mainly to the delayed 
reductions in 

- 

similar to that observed with a (figure 16). 



Curvature and pressure-gradient effects on a small-defect wake 245 

6. Conclusions 
The following main conclusions may be extracted from the preceding text. 
Small perturbations in potential flow were found to change greatly the mean strain 

field of the small-defect wakes so that the shear strain aU/ay is no longer dominant. 
Some consequences of thin-shear-layer approximations do not hold and turbulence 
quantities are strongly influenced by the extra rate of strain. 

A simplified form of the momentum equations is recommended for the case of small 
distortion of small-defect wakes and, if an appropriate definition is made, the 
equation for defect velocity can be linearized. 

Reynolds stresses, particularly the shear stress, are strongly influenced by the 
streamline curvature and the pressure gradient. The shear stress responds very 
strongly to changes in the shear strain rate but with a time lag so that such parameters 
as mixing length behave in a complex manner. The turbulent-kinetic-energy balance 
was examined in detail. It showed that the production terms respond very quickly 
but the diffusion terms and the viscous dissipation are delayed. In  flows that are 
changing rather rapidly and are far from equilibrium, non-dimensional parameters 
formed by different quantities may contain two timescales and may show combina- 
tions of rapid and time-delayed responses. 

The identification of the features described above makes it important that more 
basic and systematic investigations of the effects of streamline curvatures on wake 
flows be undertaken. In particular, further study is required of curved boundary 
layers with prolonged curvature that may maintain flow in equilibrium, as in the duct 
flow of So & Mellor (1973). 

This work was carried out at the California State University, Long Beach, and was 
supported by the National Science Foundation Grant MEA-8018565. Thanks are due 
to Professor H. Unt and Messrs V. Akdag and B. Liu for aasistance provided during 
the measurements and data analysis. 
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